dndDB: A Database Focused on Phosphorothioation of the DNA Backbone

نویسندگان

  • Hong-Yu Ou
  • Xinyi He
  • Yucheng Shao
  • Cui Tai
  • Kumar Rajakumar
  • Zixin Deng
چکیده

BACKGROUND The Dnd DNA degradation phenotype was first observed during electrophoresis of genomic DNA from Streptomyces lividans more than 20 years ago. It was subsequently shown to be governed by the five-gene dnd cluster. Similar gene clusters have now been found to be widespread among many other distantly related bacteria. Recently the dnd cluster was shown to mediate the incorporation of sulphur into the DNA backbone via a sequence-selective, stereo-specific phosphorothioate modification in Escherichia coli B7A. Intriguingly, to date all identified dnd clusters lie within mobile genetic elements, the vast majority in laterally transferred genomic islands. METHODOLOGY We organized available data from experimental and bioinformatics analyses about the DNA phosphorothioation phenomenon and associated documentation as a dndDB database. It contains the following detailed information: (i) Dnd phenotype; (ii) dnd gene clusters; (iii) genomic islands harbouring dnd genes; (iv) Dnd proteins and conserved domains. As of 25 December 2008, dndDB contained data corresponding to 24 bacterial species exhibiting the Dnd phenotype reported in the scientific literature. In addition, via in silico analysis, dndDB identified 26 syntenic dnd clusters from 25 species of Eubacteria and Archaea, 25 dnd-bearing genomic islands and one dnd plasmid containing 114 dnd genes. A further 397 other genes coding for proteins with varying levels of similarity to Dnd proteins were also included in dndDB. A broad range of similarity search, sequence alignment and phylogenetic tools are readily accessible to allow for to individualized directions of research focused on dnd genes. CONCLUSION dndDB can facilitate efficient investigation of a wide range of aspects relating to dnd DNA modification and other island-encoded functions in host organisms. dndDB version 1.0 is freely available at http://mml.sjtu.edu.cn/dndDB/.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorothioate DNA as an antioxidant in bacteria

Diverse bacteria contain DNA with sulfur incorporated stereo-specifically into their DNA backbone at specific sequences (phosphorothioation). We found that in vitro oxidation of phosphorothioate (PT) DNA by hydrogen peroxide (H(2)O(2)) or peracetic acid has two possible outcomes: DNA backbone cleavage or sulfur removal resulting in restoration of normal DNA backbone. The physiological relevance...

متن کامل

Phosphorothioation: An Unusual Post-Replicative Modification on the DNA Backbone

DNA molecules are polymers composed of basic repeating subunits of deoxyribonucleotides, which consist of the deoxyribose sugar, phosphate groups, and a nitrogenous base. They appear to fulfill all requirements necessary to maintain the genetic function of DNA. The five elements of nitrogen, phosphorus, carbon, hydrogen, and oxygen had been regarded as the canonical composition of DNA until the...

متن کامل

Phosphorothioation of DNA in bacteria by dnd genes.

Modifications of the canonical structures of DNA and RNA play critical roles in cell physiology, DNA replication, transcription and translation in all organisms. We now report that bacterial dnd gene clusters incorporate sulfur into the DNA backbone as a sequence-selective, stereospecific phosphorothioate modification. To our knowledge, unlike any other DNA or RNA modification systems, DNA phos...

متن کامل

A novel host-specific restriction system associated with DNA backbone S-modification in Salmonella

A novel, site-specific, DNA backbone S-modification (phosphorothioation) has been discovered, but its in vivo function(s) have remained obscure. Here, we report that the enteropathogenic Salmonella enterica serovar Cerro 87, which possesses S-modified DNA, restricts DNA isolated from Escherichia coli, while protecting its own DNA by site-specific phosphorothioation. A cloned 15-kb gene cluster ...

متن کامل

A Novel Target of IscS in Escherichia coli: Participating in DNA Phosphorothioation

Many bacterial species modify their DNA with the addition of sulfur to phosphate groups, a modification known as DNA phosphorothioation. DndA is known to act as a cysteine desulfurase, catalyzing a key biochemical step in phosphorothioation. However, bioinformatic analysis revealed that 19 out of the 31 known dnd gene clusters, contain only four genes (dndB-E), lacking a key cysteine desulfuras...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009